BINARY OPERATIONS ON SETS

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 18 September 2025.

Reference: A Gentle Introduction to Group Theory, Bana Al Subaiei & Muneerah Al Nuwairan, Section 4.1.

A binary operation, denoted by the generic symbol *, is an operation defined on a set G that takes two elements of G and maps them onto another element of G. That is, formally

$$*: G \times G \to G \tag{1}$$

The operation must be a function, which means it must satisfy the following conditions:

- (1) For each $a, b \in G$, the operation * assigns an image $a * b \in G$.
- (2) The assigned image a * b must be in G.
- (3) The assigned image must be unique. That is, if $a,b,c,d \in G$ and a=c and b=d, then a*b=c*d.

The operation is commutative if a*b=b*a for all $a,b \in G$. It is associative if (a*b)*c=a*(b*c) for all $a,b,c \in G$.

Example 1. Let A be the set of negative integers, and * be subtraction, so that a*b=a-b. This is not a binary operation, since if a=-1 and b=-2, we have a*b=-1-(-2)=+1, which is not in the set A.

Example 2. Let $A = \mathbb{Q}$, the set of rational numbers, and * is subtraction. In this case, a typical operation is of the form

$$\frac{a}{b} * \frac{c}{d} = \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \tag{2}$$

The result on the RHS is also a rational number, so all images of the operation are also in \mathbb{Q} .

To test uniqueness, suppose we have $\frac{a}{b} = \frac{1}{2}$, $\frac{c}{d} = \frac{5}{7}$. Then

$$\frac{1}{2} - \frac{5}{7} = \frac{7 - 10}{14} = -\frac{3}{14} \tag{3}$$

Now suppose we have $\frac{a}{b}=\frac{2}{4}$ and $\frac{c}{d}=\frac{10}{14}$, which are numerically the same as the original rational numbers. We then have

$$\frac{2}{4} - \frac{10}{14} = \frac{28 - 40}{56} = -\frac{12}{56} = -\frac{3}{14} \tag{4}$$

Thus we get the same result as in 3. In general, if we have, with $m, n \in$ $\mathbb{Z}\setminus\{0\}$

$$\frac{na}{nb} * \frac{mc}{md} = \frac{na}{nb} - \frac{mc}{md} \tag{5}$$

$$=\frac{nmad-nmbc}{nmbd}\tag{6}$$

$$\frac{nb \quad md}{nmad - nmbc} = \frac{nmad - nmbc}{nmbd} \qquad (6)$$

$$= \frac{ad - bc}{bd} \qquad (7)$$

Thus the images are unique. Thus this is a binary operation.

Example 3. Let $x, y \in \mathbb{Z}$ and * be the operation

$$a * b = xa + yb \tag{8}$$

with $a, b \in \mathbb{R}$ (the real numbers).

We can show that * is associative if and only if $x, y \in \{0, 1\}$. If it's associative, then

$$a*(b*c) = xa + y(xb + yc) \tag{9}$$

$$= xa + xyb + y^2c \tag{10}$$

$$= (a*b)*c (11)$$

$$=x(xa+yb)+yc (12)$$

$$=x^2a + xyb + yc (13)$$

Thus we must have

$$xa + xyb + y^2c = x^2a + xyb + yc \tag{14}$$

Since a, b, c are arbitrary, we can equate coefficients, giving

$$x = x^{2}$$

$$xy = xy$$

$$y^{2} = y$$
(15)

The top and bottom equations require that x = 0 or 1 and y = 0 or 1.

Now suppose that $x, y \in \{0, 1\}$. From 10 and 13 we have 4 possibilities, shown in Table 1.

In all cases, we have a*(b*c) = (a*b)*c.

x	y	$xa + xyb + y^2c$	$x^2a + xyb + yc$
0	0	0	0
0	1	c	c
1	0	a	a
1	1	a+b+c	a+b+c

TABLE 1. Associative property.

We can also show that * is commutative if and only if x = y. If x = y, then

$$a * b = xa + xb = x(a+b) \tag{16}$$

$$b * a = xb + xa = x(a+b) \tag{17}$$

If * is commutative, then

$$a * b = xa + yb = b * a = xb + ya \tag{18}$$

Again, since a, b are arbitrary, we can equate coefficients, giving x = y.

PINGBACKS

Pingback: Identity elements in binary operations

Pingback: Inverses in binary operations Pingback: Semigroups and monoids

Pingback: Idempotent elements in semigroups